19 research outputs found

    Inverted Scanning Microwave Microscope for In Vitro Imaging and Characterization of Biological Cells

    Full text link
    This paper presents for the first time an innovative instrument called an inverted scanning microwave microscope (iSMM), which is capable of noninvasive and label-free imaging and characterization of intracellular structures of a live cell on the nanometer scale. In particular, the iSMM is sensitive to not only surface structures, but also ectromagnetic properties up to one micrometer below the surface. Conveniently, the iSMM can be constructed through straightforward conversion of any scanning probe microscope, such as the atomic force microscope or the scanning tunneling microscope, with a simple metal probe to outperform traditional SMM in terms of ruggedness, and width, sensitivity and dynamic range. By contrast, the application of the traditional SMM to date has been limited to mainly surface physics and semiconductor technology, because the traditional SMM requires a fragile and expensive probe and is incompatible with saline solution or live biological cells.Comment: 5 pages, 4 figures, published in Applied Physics Letter

    Einfluss der Verarbeitungstechnologie und Werkstoffzusammensetzung auf die Struktur-Eigenschafts-Beziehungen von thermoplastischen Nanoverbundwerkstoffen

    Get PDF
    Die Einarbeitung von nanoskaligen FĂŒllstoffen zur Steigerung von polymeren Eigenschaftsprofilen ist sehr viel versprechend und stĂ¶ĂŸt daher heutzutage sowohl in der Forschung als auch in der Industrie auf großes Interesse. Bedingt durch ausgeprĂ€gte OberflĂ€chen und hohe AnziehungskrĂ€fte, liegen Nanopartikel allerdings nicht singulĂ€r sondern als PartikelanhĂ€ufungen, so genannten Agglomeraten oder Aggregaten, vor. Zur Erzielung der gewĂŒnschten Materialverbesserungen gilt es, diese aufzuspalten und homogen in der polymeren Matrix zu verteilen. Bei thermoplastischen Kunststoffen ist die gleichlĂ€ufige Doppelschneckenextrusion eines der gĂ€ngigsten Verfahren zur Einarbeitung von Additiven und FĂŒllstoffen. Aus diesem Grund war es Ziel dieser Arbeit, mittels dieses Verfahrens verbesserte Verbundwerkstoffe mit Polyamid 66- und Polyetheretherketon-Matrix, durch Einarbeitung von nanoskaligem Titandioxid (15 und 300 nm), zu generieren. In einem ersten Schritt wurden die verfahrenstechnischen Parameter, wie Drehzahl und Durchsatz, sowie die ProzessfĂŒhrung und damit deren Einfluss auf die Materialeigenschaften beleuchtet. Der spezifische Energieeintrag ist ausschlaggebend zur Deagglomeration der Nanopartikel. Dieser zeigte leichte AbhĂ€ngigkeiten von der Drehzahl und dem Durchsatz und verursachte bei der Einarbeitung der Partikel keine wesentlichen Unterschiede in der Aufspaltung der Partikel sowie gar keine in den resultierenden mechanischen Eigenschaften. Die ProzessfĂŒhrung wurde unterteilt in Mehrfach- und Einfachextrusion. Die Herstellung eines hochgefĂŒllten Masterbatches, dessen mehrfaches Extrudieren und anschließendes VerdĂŒnnen, fĂŒhrte zu einer sehr guten Deagglomeration und stark verbesserten Materialeigenschaften. Mittels Simulation des Extrusionsprozesses konnte festgestellt werden, dass das Vorhandensein von ungeschmolzenem Granulat in der Verfahrenszone zu einer Schmelze/Nanopartikel/ Feststoffreibung fĂŒhrt, die die Ursache fĂŒr eine sehr gute Aufspaltung der Partikel zu sein scheint. Durch Modifikation des Extrusionsprozesses erreichte die Einfachextrusion annĂ€hernd den Grad an Deagglomeration bei Mehrfachextrusion, wobei die Materialien bei letzterem Verfahren die besten Eigenschaftsprofile aufwiesen. In einem zweiten Schritt wurde ein Vergleich der EinflĂŒsse von unterschiedlichen PartikelgrĂ¶ĂŸen und –gehalten auf die polymeren Matrizes vollzogen. Die 15 nm Partikel zeigten signifikant bessere mechanische Ergebnisse auf als die 300 nm Partikel, und die Wirkungsweise des 15 nm Partikels auf Polyetheretherketon war stĂ€rker als auf Polyamid 66. Es konnten Steigerungen in Steifigkeit, Festigkeit und ZĂ€higkeit erzielt werden. Rasterelektronenmikroskopische Aufnahmen bestĂ€tigten diese Ergebnisse. Eine Berechnung der Plan-Selbstkosten von einem Kilogramm PEEK-Nanoverbundwerkstoff im Vergleich zu einem Kilogramm unverstĂ€rktem PEEK verdeutlichte, dass ein Material kreiert wurde, welches deutlich verbesserte Eigenschaften bei gleichem Preis aufweist. Zusammenfassend konnte in dieser Arbeit ein tieferes VerstĂ€ndnis des Extrusionsvorganges zur Herstellung von kostengĂŒnstigen und verbesserten Thermoplasten durch das Einbringen von Nanopartikeln gewonnen werden

    Pull-in and release transients of MEMS capacitive switches under high RF power

    No full text
    For the first time, both pull-in and release transients were characterized under high RF power levels on electrostatically actuated capacitive switches that exhibited little ambient temperature dependence under small-signal conditions. In spite of the complication of buckling, thermal resistances and time constants were extracted for both pulled-in and released states. In the pulled-in state, the extracted thermal resistance and time constant were approximately 5000°C/W and 40ĂŽÂŒs, respectively. In the released state, the corresponding values were approximately 3000°C/W and 100ĂŽÂŒs, respectively. These extracted parameters could serve as the foundation for physical understanding, as well as compact modeling of large-signal transients. They could also help improve the design of switches that are more robust against temperature change and RF loading

    Distributed effect in high-frequency electroporation of biological cells

    Get PDF
    Electroporation of Jurkat T-lymphoma human cells was investigated using 10-MHz continuous waves and benchmarked against that at 100 kHz. Both cell poration and cell death were simultaneously monitored by fluorescence microscopy, and found to occur under approximately four times higher voltages at 10 MHz than that at 100 kHz. This weaker-than-expected increase in poration threshold could be explained by detailed analysis of the distributed effect often ignored in electroporation studies

    Assessment of cytoplasm conductivity by nanosecond pulsed electric fields

    No full text
    the aim of this paper is to propose a new method for better assessment of cytoplasm conductivity, which is critical to the development of electroporation protocols as well as insight into fundamental mechanisms underlying electroporation. Methods: for this goal, we propose to use nanosecond electrical pulses to bypass the complication of membrane polarization and a single cell to avoid the complication of the application of the "mixing formulas". Further, by suspending the cell in a low-conductivity medium, it is possible to force most of the sensing current through the cytoplasm for a more direct assessment of its conductivity. Results: for proof of principle the proposed technique was successfully demonstrated on a Jurkat cell by comparing the measured and modeled currents. Conclusions: the cytoplasm conductivity was best assessed at 0.32 S/m and it is in line with the literature. Significance: The cytoplasm conductivity plays a key role in the understanding of the basis mechanism of the electroporation phenomenon and in particular a large error in the cytoplasm conductivity determination could result in a correspondingly large error in predicting electroporation. Methods for a good estimation of such parameter become fundamental

    A hollow fiber system for simple generation of human brain organoids

    No full text
    3D organoids exhibit near-physiological morphogenesis and histology relying on the self-organization of human pluripotent stem cells (hPSCs), representing a new class of in vitro model for studying developmental biology and diseases. An engineered approach is highly desirable to generate sufficient organoids in a simple and efficient manner. Herein, we present a new strategy for the simple formation of massive human brain organoids from hiPSCs within a hollow fiber reactor system by combining fiber materials with the developmental biology principle. A thin and finely adjustable calcium alginate (CaA) core-shell fiber was constructed using a multilayer coaxial laminar flow microfluidic system. The meter-long hollow fibers enabled neural differentiation of hiPSCs and simple formation of abundant brain organoids in a 3D matrix. The generated brain organoids displayed essential features of human brain organogenesis, including polarized neuroepithelium, cell type heterogeneity and discrete brain regions, resembling the early brain development. This approach is simple and easy to operate, which allows for simplified formation of massive brain organoids, overcoming the tedious procedures in conventional methods. In particular, the facile and scalable characteristics of hollow fibers are compatible with real-time observation and monitoring, as well as flexible tissue manipulations for downstream biological analysis. It might also provide a new platform to advance stem cell-derived organoid models and their utility in biomedical applications
    corecore